Produkt zum Begriff Inferenzstatistik:
-
Regression
Regression , Regression ist nicht nur ein wichtiges metapsychologisches Konzept, sondern auch eine kontinuierlich präsente Erfahrung im Alltag: Das lustvolle Schweifenlassen der Gedanken und Fantasien, das Zulassen Lust versprechender Wünsche, die Beschäftigung mit idealen Selbstentwürfen oder Wendungen ins Destruktive - all diese Erfahrungsfelder belegen dessen lebenspraktische Bedeutung. Die gegenwärtige, plural gewordene Psychoanalyse versucht sich zunehmend an einer kritischen Überprüfung und Neuausrichtung des Regressionskonzepts vor dem Hintergrund aktueller Theorien und Erfahrungen aus der Praxis. In diesem Sinne diskutiert Lutz Garrels Regression als »Konzept in der Krise« und skizziert Wege einer phänomenologischen Wiederannäherung - als konstruktiver Ansatzpunkt einer sich dialogisch entfaltenden Debatte mit den Beiträger*innen des Bandes. Hauptartikel und Replik von Lutz Garrels, Kommentare von Felix Brauner, Peter Geißler, Elfriede Löchel, Thomas Meier, Kai Rugenstein und Carsten Spitzer , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 22.90 € | Versand*: 0 € -
Regression (Neu differenzbesteuert)
Regression
Preis: 11.89 € | Versand*: 4.95 € -
Datenanalyse mit Python (McKinney, Wes)
Datenanalyse mit Python , Die erste Adresse für die Analyse von Daten mit Python Das Standardwerk in der 3. Auflage, aktualisiert auf Python 3.10 und pandas 1.4 Versorgt Sie mit allen praktischen Details und mit wertvollem Insiderwissen, um Datenanalysen mit Python erfolgreich durchzuführen Mit Jupyter-Notebooks für alle Codebeispiele aus jedem Kapitel Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.10 und pandas 1.4, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy und Jupyter kennen. Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und Zusatzmaterial zum Buch sind auf GitHub verfügbar. Aus dem Inhalt: Nutzen Sie Jupyter Notebook und die IPython-Shell für das explorative Computing Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen Setzen Sie die Datenanalyse-Tools der pandas-Bibliothek ein Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten Erstellen Sie interformative Visualisierungen mit matplotlib Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätze zurechtzuschneiden, umzugestalten und zusammenzufassen Analysieren und manipulieren Sie verschiedenste Zeitreihendaten Erproben Sie die konkrete Anwendung der im Buch vorgestellten Werkzeuge anhand verschiedener realer Datensätze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, Erscheinungsjahr: 20230302, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: McKinney, Wes, Übersetzung: Lichtenberg, Kathrin~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, Seitenzahl/Blattzahl: 556, Keyword: Big Data; Data Mining; Data Science; IPython; Jupyter; Jupyter notebook; NumPy; Python 3.10; matplotlib; pandas 1.4, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Datenverarbeitung / Simulation~Informatik~Informationsverarbeitung (EDV)~Internet / Programmierung~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 241, Breite: 168, Höhe: 35, Gewicht: 999, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2660049, Vorgänger EAN: 9783960090809 9783960090007 9783864903038 9783958750739, andere Sprache: 9781491957660, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0120, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 44.90 € | Versand*: 0 € -
Jaeggi, Rahel: Fortschritt und Regression
Fortschritt und Regression , Fortschritt ist sozialer Wandel hin zu einer Situation, in der die Verhältnisse nicht nur anders, sondern besser werden - etwa dadurch, dass die Sklaverei abgeschafft wird oder die Vergewaltigung in der Ehe als Verbrechen gilt. Viele würden dem zustimmen, und doch hat die Vorstellung eines generellen gesellschaftlichen Fortschritts ihren Glanz verloren. Sie ruft sogar Skepsis hervor. Hingegen wächst die Neigung, etwa die Zunahme autoritärer Ressentiments und rechtspopulistischer Bewegungen als eine Art von Regression zu bewerten. Rahel Jaeggi verteidigt in ihrem Buch das Begriffspaar Fortschritt und Regression als unverzichtbares sozialphilosophisches Werkzeug für die Diagnose und Kritik unserer Zeit. Als fortschrittlich oder regressiv versteht sie nicht nur das Resultat, sondern vor allem die Gestalt der gesellschaftlichen Transformationsprozesse selbst. Indem sie nach den Dynamiken sozialen Wandels fragt sowie nach den Erfahrungsblockaden, die regressiven Tendenzen Vorschub leisten, entwickelt sie einen Begriff des Fortschritts, der materialistisch und plural, also durch und durch emanzipativ und zeitgemäß ist. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Produktform: Leinen, Thema: Auseinandersetzen, Thema: Verstehen, Text Sprache: ger, Breite: 126, Höhe: 28, Gewicht: 416, Produktform: Gebunden, Genre: Geisteswissenschaften/Kunst/Musik, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0160, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 1722758
Preis: 28.00 € | Versand*: 0 €
-
Handelt es sich bei dieser Fragestellung um die Inferenzstatistik oder die deskriptive Statistik?
Die Fragestellung allein lässt keine eindeutige Zuordnung zur Inferenzstatistik oder zur deskriptiven Statistik zu. Es hängt davon ab, ob die Frage darauf abzielt, allgemeine Informationen über eine Population zu erhalten (deskriptive Statistik) oder ob sie darauf abzielt, Schlussfolgerungen über eine Population auf der Grundlage von Stichproben zu ziehen (Inferenzstatistik).
-
Wann Korrelation und wann Regression?
Wann Korrelation und wann Regression? Korrelation wird verwendet, um den Grad des Zusammenhangs zwischen zwei Variablen zu messen, ohne eine Ursache-Wirkungs-Beziehung zu postulieren. Wenn man herausfinden möchte, ob und wie stark zwei Variablen miteinander zusammenhängen, ist die Korrelation die geeignete Methode. Regression hingegen wird verwendet, um eine Vorhersage oder Schätzung einer abhängigen Variablen basierend auf einer oder mehreren unabhängigen Variablen zu machen. Wenn man also den Einfluss einer oder mehrerer Variablen auf eine andere Variable untersuchen möchte, ist die Regression die passende Methode. Insgesamt kann man sagen, dass Korrelation verwendet wird, um den Zusammenhang zwischen Variablen zu untersuchen, während Regression verwendet wird, um Vorhersagen oder Schätzungen basierend auf diesen Zusammenhängen zu machen. Beide Methoden sind wichtige Werkzeuge in der statistischen Analyse, jedoch mit unterschiedlichen Anwendungsgebieten und Zielen.
-
Welche Korrelation wenn keine Normalverteilung?
Welche Korrelation wenn keine Normalverteilung? In Fällen, in denen die Daten nicht normalverteilt sind, kann die Pearson-Korrelation möglicherweise nicht die beste Wahl sein, da sie auf der Annahme einer normalen Verteilung basiert. In solchen Fällen könnte die Verwendung von Rangkorrelationskoeffizienten wie dem Spearman's Rho oder dem Kendall's Tau angemessener sein, da sie weniger anfällig für Abweichungen von der Normalverteilung sind. Diese Rangkorrelationskoeffizienten basieren auf der Rangordnung der Daten anstelle der tatsächlichen Werte und sind daher robuster gegenüber Ausreißern und nicht normalverteilten Daten. Es ist wichtig, die Verteilung der Daten zu überprüfen und den am besten geeigneten Korrelationskoeffizienten entsprechend der Art der Daten auszuwählen.
-
Was ist die Bedeutung und Anwendung von Korrelation in Statistik und Datenanalyse?
Die Korrelation misst den Zusammenhang zwischen zwei Variablen und zeigt, ob sie gemeinsam variieren. Sie wird verwendet, um Beziehungen zwischen Daten zu identifizieren und Muster zu erkennen. Korrelationen können positiv, negativ oder neutral sein und helfen bei der Interpretation von statistischen Ergebnissen.
Ähnliche Suchbegriffe für Inferenzstatistik:
-
Regression [Blu-ray] (Neu differenzbesteuert)
Regression [Blu-ray]
Preis: 10.58 € | Versand*: 4.95 € -
Fahrmeir, Ludwig: Statistik
Statistik , Dieses Lehrbuch liefert eine umfassende Darstellung der deskriptiven und induktiven Statistik sowie moderner Methoden der explorativen Datenanalyse. Dabei stehen inhaltliche Motivation, Interpretation und Verständnis der Methoden im Vordergrund. Unterstützt werden diese durch zahlreiche Grafiken und Anwendungsbeispiele, die auf realen Daten basieren, sowie passende exemplarische R -Codes und Datensätze. Die im Buch beschriebenen Ergebnisse können außerdem anhand der online zur Verfügung stehenden Materialien reproduziert sowie um eigene Analysen ergänzt werden. Eine kurze Einführung in die freie Programmiersprache R ist ebenfalls enthalten. Hervorhebungen erhöhen die Lesbarkeit und Übersichtlichkeit. Das Buch eignet sich als vorlesungsbegleitende Lektüre, aber auch zum Selbststudium. Für die 9. Auflage wurde das Buch inhaltlich überarbeitet und ergänzt. Leserinnen und Leser erhalten nun in der Springer-Nature-Flashcards-App zusätzlich kostenfreien Zugriff auf über 100 exklusive Lernfragen, mit denen sie ihr Wissen überprüfen können. Die Autorinnen und Autoren Prof. Dr. Ludwig Fahrmeir war Professor für Statistik an der Universität Regensburg und der LMU München. Prof. Dr. Christian Heumann ist Professor am Institut für Statistik der LMU München. Dr. Rita Künstler war wissenschaftliche Mitarbeiterin am Institut für Statistik der LMU München. Prof. Dr. Iris Pigeot ist Professorin an der Universität Bremen und Direktorin des Leibniz-Instituts für Präventionsforschung und Epidemiologie - BIPS. Prof. Dr. Gerhard Tutz war Professor für Statistik an der TU Berlin und der LMU München. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 49.99 € | Versand*: 0 € -
Kleine Formelsammlung Statistik
Kleine Formelsammlung Statistik
Preis: 4.99 € | Versand*: 3.99 € -
Statistik unterrichten (Riemer, Wolfgang)
Statistik unterrichten , Ein innovativer Stochastikunterricht mit authentischen Fallbeispielen Ein Stochastikunterricht nach klassischem Muster ist linear aufgebaut: zuerst beschreibende Statistik, dann Wahrscheinlichkeitsrechnung, zum Abschluss beurteilende Statistik. Ein solcher Aufbau strebt nach formaler Exaktheit und Systematik. Aber verkennt er nicht die Neugierde und den Lebensweltbezug der Schüler:innen als treibende Kraft des Lernens? Statistik unterrichten ist eine erfrischend innovative Didaktik der Stochastik. Funktionierende Schulpraxis steht im Vordergrund, solide reflektierte Theorie dahinter. Auf der Grundlage eines umfassenden Wahrscheinlichkeitsbegriffs werden beschreibende Statistik, Wahrscheinlichkeitsrechnung und Kerngedanken beurteilender Statistik von Anfang an spiralcurricular miteinander vernetzt. Dies gelingt - handlungsorientiert - durch spannende und schulalltagstaugliche Fallbeispiele, in deren Zentrum Kinder und Jugendliche mit ihren Alltagsintuitionen und ihrem Interesse an realistischen Fragen stehen. Ziel ist ein nachhaltiger, kognitiv aktivierender Unterricht: Begriffe werden über konkrete Inhalte gebildet, als sinnstiftend erlebt und Zusammenhänge entdeckt. Ohne großen organisatorischen Aufwand lassen sich alle Experimente in einer Schulstunde ?vor Ort? realisieren. Das Buch ist modular aufgebaut, Kapitel lassen sich unabhängig voneinander lesen und werden durch wenige Paradigmen zusammengehalten: Pflege einen passenden Wahrscheinlichkeitsbegriff. Trenne Modell und Realität messerscharf und konsequent. Untersuche Zufallsschwankungen statt sie wegzuwünschen. Stelle authentische Probleme ins Zentrum. Nutze den ?didaktischen Dreisatz? Spekulieren-Experimentieren-Reflektieren. Der Band richtet sich an Referendarinnen und Referendare sowie Mathematik-Lehrkräfte beider Sekundarstufen, die spannende und erkenntnisreiche Unterrichtsstunden gestalten möchten, an die sich die Schüler:innen auch lange nach der Schulzeit mit Vergnügen erinnern. , Schule & Ausbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20231107, Produktform: Kartoniert, Autoren: Riemer, Wolfgang, Seitenzahl/Blattzahl: 144, Keyword: Beurteilende Statistik; Experimentieren; Glücksrad auf der schiefen Ebene; Grundvorstellungen; Hypothesen; Konfidenzintervall; Normalverteilung; Problemlösen; Riemerwürfel; Signifikanztest; Stochastik; Testgrößen; Wahrscheinlichkeit; kognitive Aktivierung, Fachschema: Mathematik / Didaktik, Methodik~Statistik~Pädagogik / Schule, Fachkategorie: Schule und Lernen, Bildungszweck: für die Sekundarstufe I~Für die Sekundarstufe, Warengruppe: HC/Didaktik/Methodik/Schulpädagogik/Fachdidaktik, Fachkategorie: Schulen, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Kallmeyer'sche Verlags-, Verlag: Kallmeyer'sche Verlags-, Verlag: Kallmeyer'sche Verlagsbuchhandlung, Länge: 225, Breite: 158, Höhe: 11, Gewicht: 354, Produktform: Kartoniert, Genre: Sozialwissenschaften/Recht/Wirtschaft, Genre: Sozialwissenschaften/Recht/Wirtschaft, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0250, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 29.95 € | Versand*: 0 €
-
Was ist die Bedeutung und Anwendung von Korrelation in der Statistik und Datenanalyse?
Die Korrelation misst den Zusammenhang zwischen zwei Variablen und gibt an, wie stark sie miteinander in Beziehung stehen. In der Statistik wird die Korrelation verwendet, um zu untersuchen, ob es einen linearen Zusammenhang zwischen Variablen gibt. Sie wird auch genutzt, um Vorhersagen zu treffen und Muster in den Daten zu identifizieren.
-
Wie berechnet man ein Konfidenzintervall für eine Normalverteilung?
Um ein Konfidenzintervall für eine Normalverteilung zu berechnen, benötigt man den Mittelwert der Stichprobe, die Standardabweichung der Stichprobe und den gewünschten Konfidenzniveau. Mit diesen Informationen kann man das Konfidenzintervall mit Hilfe der Formel: Konfidenzintervall = Mittelwert +/- (Z-Wert * Standardabweichung / Wurzel(n)) berechnen, wobei Z-Wert den kritischen Wert aus der Standardnormalverteilungstabelle darstellt und n die Stichprobengröße ist.
-
Was ist der Unterschied zwischen Korrelation und Regression?
Was ist der Unterschied zwischen Korrelation und Regression? Korrelation misst lediglich die Stärke und Richtung des Zusammenhangs zwischen zwei Variablen, während Regression versucht, eine mathematische Beziehung zwischen den Variablen zu modellieren. Korrelation gibt keinen Hinweis auf Ursache und Wirkung, während Regression manchmal verwendet wird, um Vorhersagen zu treffen. Korrelation wird oft mit dem Korrelationskoeffizienten gemessen, während Regression die Beziehung durch eine Regressionsgleichung beschreibt. Insgesamt kann man sagen, dass Korrelation den Zusammenhang zwischen Variablen beschreibt, während Regression versucht, diesen Zusammenhang zu modellieren und zu erklären.
-
Was ist die Korrelation zwischen Varianz und Erwartungswert?
Die Korrelation zwischen Varianz und Erwartungswert hängt von der Verteilung der Daten ab. Im Allgemeinen gibt es keine direkte Korrelation zwischen den beiden. Es ist jedoch möglich, dass eine höhere Varianz mit einem höheren Erwartungswert einhergeht, wenn die Datenpunkte in der Verteilung weiter von ihrem Mittelwert abweichen.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.